Source code for lib.analysis.channel

import re
import numpy
from networkx.algorithms.components.connected import connected_components
import lib.util as util
import lib.config as config


[docs]def conv_len_conv_refr_time(log_dict, nicks, nick_same_list, rt_cutoff_time, cutoff_percentile): """ Calculates the conversation length (CL) that is the length of time for which two users communicate i.e. if a message is not replied to within Response Time(RT), then it is considered as a part of another conversation. This function also calculates the conversation refresh time(CRT) For a pair of users, this is the time when one conversation ends and another one starts. Args: log_dict (str): Dictionary of logs data created using reader.py nicks(List) : list of nickname created using nickTracker.py nick_same_list :List of same_nick names created using nickTracker.py rt_cutoff_time (int) : Response Time (RT) cutoff to be used for CL and CRT calculations Returns: row_cl(zip List): Conversation Length row_crt(zip List) :Conversation Refresh time """ conv = [] conv_diff = [] G = util.to_graph(nick_same_list) conn_comp_list = list(connected_components(G)) util.create_connected_nick_list(conn_comp_list) # We use connected components algorithm to group all those nick clusters that have atleast one nick common in their clusters. # So e.g. # Cluster 1- nick1,nick2,nick3,nick4(some nicks of a user) # Cluster 2 -nick5,nick6,nick2,nick7. # Then we would get - nick1,nick2,nick3,nick4,nick5,nick6,nick7 and we can safely assume they belong to the same user. conversations=[[] for i in range(config.MAX_CONVERSATIONS)] # This might need to be incremented from 10000 if we have more users. Same logic as the above 7000 one. Applies to all the other codes too. ## I would advice on using a different data structure which does not have an upper bound like we do in arrays. def build_conversation(rec_list, nick, send_time, nick_to_search, nick_receiver, nick_sender, dateadd, conversations, conn_comp_list, line): for names in rec_list: conversations, nick_receiver, send_time = conv_helper(names, nick, send_time, nick_to_search, nick_receiver, nick_sender, dateadd, conversations, conn_comp_list, line) return conversations, nick_receiver, send_time def conv_helper(rec, nick, send_time, nick_to_search, nick_receiver, nick_sender, dateadd, conversations, conn_comp_list, line): if(rec == nick): send_time.append(line[1:6]) if(nick_to_search != nick): nick_receiver = util.get_nick_sen_rec(len(nicks), nick, conn_comp_list, nick_receiver) for i in range(config.MAX_CONVERSATIONS): if (nick_sender in conversations[i] and nick_receiver in conversations[i]): conversations = conv_append(conversations, i, dateadd, line) break if(len(conversations[i]) == 0): conversations[i].append(nick_sender) conversations[i].append(nick_receiver) conversations = conv_append(conversations, i, dateadd, line) break return conversations, nick_receiver, send_time def conv_mat_diff(i,j,conversations): """ i(int): matrix index for row j(int): matrix index for column """ return (conversations[i][j]-conversations[i][j-1]) def conv_append(conversations, index, dateadd, line): conversations[index].append(config.HOURS_PER_DAY*config.MINS_PER_HOUR*dateadd + int(line[1:6][0:2])*config.MINS_PER_HOUR + int(line[1:6][3:5])) return conversations def parse_log_lines_for_conv(log_dict, nicks, conn_comp_list, conversations): dateadd = -1 # Variable used for response time calculation. Varies from 0-365. for day_content_all_channels in log_dict.values(): for day_content in day_content_all_channels: day_log = day_content["log_data"] dateadd = dateadd + 1 send_time = [] # list of all the times a user sends a message to another user # code for making relation map between clients for line in day_log: flag_comma = 0 if(util.check_if_msg_line (line)): nick_sender = "" nick_receiver = "" m = re.search(r"\<(.*?)\>", line) nick_to_search = util.correctLastCharCR(m.group(0)[1:-1]) nick_sender = util.get_nick_sen_rec(len(nicks), nick_to_search, conn_comp_list, nick_sender) for nick in nicks: rec_list = [e.strip() for e in line.split(':')] util.rec_list_splice(rec_list) if not rec_list[1]: break rec_list = util.correct_last_char_list(rec_list) conversations, nick_receiver, send_time = build_conversation(rec_list, nick, send_time, nick_to_search, nick_receiver, nick_sender, dateadd, conversations, conn_comp_list, line) if "," in rec_list[1]: flag_comma = 1 rec_list_2 = [e.strip() for e in rec_list[1].split(',')] rec_list_2 = util.correct_last_char_list(rec_list_2) conversations, nick_receiver, send_time = build_conversation(rec_list_2, nick, send_time, nick_to_search, nick_receiver, nick_sender, dateadd, conversations, conn_comp_list, line) if(flag_comma == 0): rec = util.splice_find(line, ">", ", ", 1) conversations, nick_receiver, send_time = conv_helper(rec, nick, send_time, nick_to_search, nick_receiver, nick_sender, dateadd, conversations, conn_comp_list, line) return conversations, nick_receiver, send_time conversations, nick_receiver, send_time = parse_log_lines_for_conv(log_dict, nicks, conn_comp_list, conversations) # Consider all cases in which messages are addressed as - (nick1:nick2 or nick1,nick2 # or nick1,nick2:) and stores their response times in conversations. # conversations[i] contains all the response times between userA and userB # throughout a chosen time period. for i in range(len(conversations)): # remove the first two elements from every conversations[i] # as they are the UIDS of sender and receiver respectively(and not RTs) if(len(conversations[i]) != 0): del conversations[i][0:2] for i in range(len(conversations)): if(len(conversations[i]) != 0): first = conversations[i][0] # response times are calculated starting from index 2. # So now we have all the response times in conversations. for j in range(1, len(conversations[i])): # We are recording the conversation length in conv and CRT in conv_diff. if(conv_mat_diff(i, j, conversations) > rt_cutoff_time): conv.append(conversations[i][j-1] - first) conv_diff.append(conv_mat_diff(i, j, conversations)) first = conversations[i][j] if(j == (len(conversations[i]) - 1)): conv.append(conversations[i][j] - first) break # To plot CDF we store the CL and CRT values and their number of occurences row_cl = build_stat_dist(conv) row_crt = build_stat_dist(conv_diff) truncated_cl, cl_cutoff_time = truncate_table(row_cl, cutoff_percentile) truncated_crt, crt_cutoff_time = truncate_table(row_crt, cutoff_percentile) return truncated_cl, truncated_crt
[docs]def response_time(log_dict, nicks, nick_same_list, cutoff_percentile): """ finds the response time of a message i.e. the best guess for the time at which one can expect a reply for his/her message. Args: log_dict (str): Dictionary of logs data created using reader.py nicks(List) : List of nickname created using nickTracker.py nick_same_list :List of same_nick names created using nickTracker.py cutoff_percentile (int): Cutoff percentile indicating statistical significance Returns: rows_RT(zip List): Response Time (This refers to the response time of a message i.e. the best guess for the time at which one can expect a reply for his/her message) """ G = util.to_graph(nick_same_list) conn_comp_list = list(connected_components(G)) util.create_connected_nick_list(conn_comp_list) graph_cumulative = [] graph_x_axis = [] graph_y_axis = [] def build_mean_list(conversations, index, mean_list): for j in range(2, len(conversations[index])): mean_list.append(conversations[index][j]) return mean_list def resp_helper(rec, nick, send_time, nick_to_search, nick_receiver, nick_sender, conversations, conn_comp_list): if(rec == nick): send_time.append(line[1:6]) if(nick_to_search != nick): nick_receiver = util.get_nick_sen_rec(len(nicks), nick, conn_comp_list, nick_receiver) for i in range(config.MAX_RESPONSE_CONVERSATIONS): if (nick_sender in conversations[i] and nick_receiver in conversations[i]): conversations[i].append(line[1:6]) break if(len(conversations[i]) == 0): conversations[i].append(nick_sender) conversations[i].append(nick_receiver) conversations[i].append(line[1:6]) break return conversations, nick_receiver, send_time for day_content_all_channels in log_dict.values(): for day_content in day_content_all_channels: day_log = day_content["log_data"] send_time = [] # list of all the times a user sends a message to another user meanstd_list = [] totalmeanstd_list = [] x_axis = [] y_axis = [] real_y_axis = [] conversations = [[] for i in range(config.MAX_RESPONSE_CONVERSATIONS)] # code for making relation map between clients for line in day_log: flag_comma = 0 if(util.check_if_msg_line (line)): nick_sender = "" nick_receiver = "" m = re.search(r"\<(.*?)\>", line) nick_to_search = util.correctLastCharCR(m.group(0)[1:-1]) nick_sender = util.get_nick_sen_rec(len(nicks), nick_to_search, conn_comp_list, nick_sender) for nick in nicks: rec_list = [e.strip() for e in line.split(':')] util.rec_list_splice(rec_list) if not rec_list[1]: break rec_list = util.correct_last_char_list(rec_list) for name in rec_list: conversations, nick_receiver, send_time = resp_helper(name, nick, send_time, nick_to_search, nick_receiver, nick_sender, conversations, conn_comp_list) if "," in rec_list[1]: flag_comma = 1 rec_list_2 = [e.strip() for e in rec_list[1].split(',')] rec_list_2 = util.correct_last_char_list(rec_list_2) for name in rec_list_2: conversations, nick_receiver, send_time = resp_helper(name, nick, send_time, nick_to_search, nick_receiver, nick_sender, conversations, conn_comp_list) if(flag_comma == 0): rec = util.splice_find(line, ">", ", ",1) conversations, nick_receiver, send_time = resp_helper(rec, nick, send_time, nick_to_search, nick_receiver, nick_sender, conversations, conn_comp_list) for i in range(config.MAX_RESPONSE_CONVERSATIONS): if(len(conversations[i]) != 0): for j in range(2, len(conversations[i]) - 1): conversations[i][j]=(int(conversations[i][j+1][0:2])*config.MINS_PER_HOUR+int(conversations[i][j+1][3:5])) - (int(conversations[i][j][0:2])*config.MINS_PER_HOUR+int(conversations[i][j][3:5])) for i in range(config.MAX_RESPONSE_CONVERSATIONS): if(len(conversations[i]) != 0): if(len(conversations[i]) == 3): conversations[i][2] = int(conversations[i][2][0:2])*config.MINS_PER_HOUR+int(conversations[i][2][3:5]) else: del conversations[i][-1] # Explanation provided in parser-CL+CRT.py for i in range(config.MAX_RESPONSE_CONVERSATIONS): if(len(conversations[i]) != 0): totalmeanstd_list = build_mean_list(conversations, i, totalmeanstd_list) if(len(totalmeanstd_list) != 0): for i in range(max(totalmeanstd_list) + 1): x_axis.append(i) for i in x_axis: y_axis.append(float(totalmeanstd_list.count(i)) / float(len(totalmeanstd_list))) # finding the probability of each RT to occur=No. of occurence/total occurences. real_y_axis.append(y_axis[0]) for i in range(len(y_axis)): real_y_axis.append(float(real_y_axis[i-1]) + float(y_axis[i])) # to find cumulative just go on adding the current value to previously cumulated value till sum becomes 1 for last entry. for i in range(len(totalmeanstd_list)): graph_cumulative.append(totalmeanstd_list[i]) if len(totalmeanstd_list) > 0: totalmeanstd_list.append(numpy.mean(totalmeanstd_list)) totalmeanstd_list.append(numpy.mean(totalmeanstd_list)+2*numpy.std(totalmeanstd_list)) for i in range(config.MAX_RESPONSE_CONVERSATIONS): if(len(conversations[i]) != 0): meanstd_list = build_mean_list(conversations, i, meanstd_list) conversations[i].append(numpy.mean(meanstd_list)) conversations[i].append(numpy.mean(meanstd_list)+(2*numpy.std(meanstd_list))) meanstd_list[:] = [] graph_cumulative.sort() truncated_rt = None rt_cutoff_time = None if graph_cumulative: for i in range(graph_cumulative[len(graph_cumulative)-1] + 1): graph_y_axis.append(graph_cumulative.count(i)) # problem when ti=0 count is unexpectedly large graph_x_axis.append(i) # Finally storing the RT values along with their frequencies in a csv file; no need to invoke build_stat_dist() function rows_rt = zip(graph_x_axis, graph_y_axis) truncated_rt, rt_cutoff_time = truncate_table(rows_rt, cutoff_percentile) if config.CUTOFF_TIME_STRATEGY == "TWO_SIGMA": resp_time, resp_frequency_tuple = zip(*truncated_rt) resp_frequency = list(resp_frequency_tuple) rt_cutoff_time_frac = numpy.mean(resp_frequency) + 2*numpy.std(resp_frequency) rt_cutoff_time = int(numpy.ceil(rt_cutoff_time_frac)) return truncated_rt, rt_cutoff_time
[docs]def build_stat_dist(number_list): """ Summarize a list into a statistical distribution. An empty input list generates an empty output list. Args: number_list (List): List containing positive integers Returns: rows_table(zip List): A tuple with two items in each element, in the (number, frequency) format """ # check for an empty input list if not number_list: return [] graph_x = [] graph_y = [] for i in range(max(number_list)+1): graph_x.append(i) graph_y.append(number_list.count(i)) # print zip(graph_x, graph_y) return zip(graph_x, graph_y)
[docs]def truncate_table(table, cutoff_percentile): """ The calculations of conversation characteristics, namely RT, CL and CRT, are based on the cutoff values estimated for RT and CL. This generic function takes a two column table and truncates the same to a required percentile value. Usually the RT followed by CL tables are processed through this function. cutoff_percentile (float) : Cutoff indicating the statistical significance of observations on conversation characteristics. The value is expressed as a floating point number. Args: table (zip List): List containing 2-tuple elements, ex: [(0,10),(1,5)] Returns: truncated_table (zip List): A truncated version of table provided as input argument. The table is truncated to the level of statistical significance mentioned in the cutoff_percentile parameter. cutoff_time (int): Cutoff time value corresponding to the chosen level of statistical significance. """ truncated_table = None cutoff_time = None if table: times, values = zip(*table) total_value = 0 for value in values: total_value = total_value + value index = 0 cutoff_index = 0 cumulative_value = 0 while (index < len(values)): if (values[index] != 0): cumulative_value = cumulative_value + values[index] if (cumulative_value <= (1-cutoff_percentile/100.0) * total_value): cutoff_index = index else: break index = index + 1 # slice counts the number of elements, which will be one greater than the index truncated_table = zip(times[:cutoff_index+1], values[:cutoff_index+1]) cutoff_time = times[cutoff_index] return truncated_table, cutoff_time